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Because the polar regions are remote from
anthropogenic pollution sources, chemical
constituents of Antarctic snow reflect the
background level of the pollution in the
atmosphere (1,2). Various substances are
transported over the Antarctic through the
atmosphere (3) and deposited onto the
snow surface (4,5), but their mechanisms
and possible sources are not yet fully under-
stood. Particularly, polar stratospheric pre-
cipitation in Antarctic snow has recently
attracted many investigators to the connec-
tion with the Antarctic ozone hole (6-8).

Chemical constituent concentrations in
air and snow in the Arctic area show a dis-
tinct seasonal pattern caused by a variation
in long-range atmospheric circulation in
high and midlatitude areas (9,10). Airborne
sulfate and several trace metals of crustal
and anthropogenic origin show strong
peaks in spring; this is known as Arctic haze
(9,110). In the Antarctic, a seasonal pattern
of crustal, marine, and sulfate aerosol con-
centration has been reported at the South
Pole (11-13) and at a coastal region (14)
with a maximum for the crustal and sulfate
species and with a minimum for the marine
component during austral summer. But
there are few studies of snow in Antarctica
that clarify autumn-spring peaks of Pb in
the east coast of the Antarctic Peninsula
(15) and summer peaks of NO3- and so42-
concentrations at Mizuho Station (16).
However, available data sets for long- and
short-term changes in chemical components
in Antarctic snow are still limited.

Chemical constituent concentrations in
air and snow in Arctic and Antarctic areas
are extremely low. Previous analyses of trace
elements in polar snow have been carried

out by graphite furnace atomic absorption
following a preconcentration in a clean
room (1,2,4,5,14). After the introduction
of inductively coupled plasma-mass spec-
trometry (ICP-MS), which is a well estab-
lished powerful technique for the determi-
nation of trace elements, it becomes possi-
ble to determine as many as 40 elements at
detection limits of below the order of parts
per trillion (ppt) (17,18). The present data
set, however, is probably one of the most
extensive so far reported for trace elements
in precipitation in the Antarctic. In this
study, we present temporal variations of
trace elements in the Antarctic area and
discuss their using enrichment factors.

Methods
Field sampling. From July to December
1991, drifting snow samples were collected
at Asuka Station (71032'S, 24°08'E, 930 m
above sea level ). Snow was obtained by the
snow trap method reported by Osada at al.
(16). Sampling was carried out with special
care to avoid contamination. Asuka Station
is located 120 km from the coast in Queen
Maud Land, East Antarctica (Fig. 1). The
S0r Rondane Mountains are situated sever-
al hundred kilometers south of the station.
At the station, katabatic winds prevail with
the mean wind speed of 12.6 m/sec in an
east southeast direction (19). Net accumu-
lation of snow over January to November
1991 at the station was estimated as 35 cm
by the snow stake method (19); the devia-
tion of the stake measurements was within
10 cm in the period of this study (19.

Chemical analysis. Snow samples were
collected in specially prepared polyethylene
bottles, which had been thoroughly

washed with nitric acid and distilled water.
The samples were kept frozen until the ana-
lytical stage. Sample pretreatment, such as
preconcentration or filtration, was not per-
formed. Two sets of running conditions of
ICP-MS (ELAN 6000, Perkin Elmer,
Osaka, Japan) were used. For the analyses
of Ca, Mg, K, and Al, the RF power was
1000 W and the nebulizer gas flow rate was
0.725 1/min; for all other elements, the RF
power was 600 W and the rebulizer gas
flow rate was 1 1/min. Sampling cones and
skimmer cones were made of Pt. Ultra pure
water (Tamapure-100) and ultra-high puri-
ty nitric acid prepared for the semiconduc-
tor industry, both provided by Tama
Chemical Industry Co., Ltd (Tokyo, Japan)
were used throughout the experiments.
Dilutions were carried out on a clean bench
with teflon-coated volumetric ware. We
analyzed the standard reference material
SRM1643c provided by the National
Institute of Standards and Technology for
the selected elements (17). Concentrations
obtained by this method were in good
agreement with the certified values for all
the elements'examined (17).

Besides major and trace metals, we also
measured C1, s042-, and NO3- concentra-
tions in drift snow by ion chromatography
(SHIMADZU HIC-6A, SHIMADZU,
Japan).

Results and Discussion
Sodium is often referred to as the marine
reference element. The seasonal trend for
Na shows a transient increase in early
October, which is superimposed on a slowly
increasing background from winter to sum-
mer (Fig. 2). Previous meteorological stud-
ies have shown that meridional long-range
air transports from the surrounding oceans
become prominent in September to
October (20,21). Since a transient increase
in wind speed was observed in the period of
5-8 October in the present study (13), the
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Na peak event can be attributed to sea salt
spray transported during low pressure dis-
turbances in the austral spring. The overall
trend in concentration of the chloride ion
shows a good agreement with Na ([Cl] =
1.71 x [Na]; r = 0.993). Chloride versus
sodium ratios for 18 samples were calculat-
ed as 1.71, which is close to the sea water
value of 1.73 (22).

The Mg, K, Ca, and Sr have peaks in
the spring that are significantly correlated
with Na and Al (Tables 1 and 2). To exam-
ine maritime contributions to these ele-
ments, enrichment factors were calculated
by applying the following equation:

EFsea= [X/Na]snowl/[X/Na]sea

where X refers to the concentrations of the
elements of interest (1,2,4,23). Calculated
EFsea for Mg, K, Ca, and Sr are almost in
unity, except during late September when
they are increased 2- to 10-fold. Therefore,
origins other than sea salt spray must be
considered during and after the peak event
for these elements. Although a concentra-
tion profile of Se has a significant correla-
tion with Na, the contribution of the sea
salt spray is almost negligible [Se/Na] =
3.64 x 10-9) (22) and EFsea for Se is around
102_104. From the studies of the composi-
tion of volcanic smoke fumes, volcanoes
could be a significant source of Se (24).

Aluminum, a crustal reference element,
shows a strong peak in late September and
early October (Fig. 2). The second peak of
Al coincides with the Na peak. Except Na
and Se, all of the elements examined have a
significant correlation with Al (Tables
1-3). Crustal enrichment factors near unity
are obtained for Fe, Mn, Rb, Cr, Ni, V,
and all the rare earth elements before late
September, suggesting that all these ele-
ments are of crustal origin. High EFcrust
values ranging from one to four orders of
magnitude are observed for Pb, Cd, Cu,
and Zn as previously reported (3). The
possible natural source for these heavy met-
als could be volcanism.

Lead concentrations for the recent
Antarctic surface snow has been found to
be in the range of 2-13 pg/g (1,2,4,23,25).
Irrespective of possible local lead emissions
from Asuka Station or snow vehicles, this is
almost the same value as that of drift snow
from July to late September. The subse-
quent lead peak may be due to volcanism
or anthropogenic production transported
by long-range air transport processes.

Rare earth patterns are often used as trac-
ers of atmospheric materials on a global scale
because rare earth elements are chemically
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Figure 1. Asuka Station in Queen Maud Land, East Antarctica
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Figure 2. Seasonal concentrations of Na, Al, Cl-, NO3-; and So42- in snow at Asuka Station.
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Table 1. Seasonal variations in the concentrations of major elements

Date Na Mg K Ca Fe Al

25 Jul-20 Aug 3.25 x 102 2.58 x 10 2.55 x 10 1.52 x 10 1.49 x 10 6.08
20-25 Aug 8.90 x 10 9.83 9.28 7.68 5.84 x 10-1 4.62
25-30 Aug 1.45 x 102 1.78 x 10 1.13 x 10 8.71 7.26 x 101 4.66
30 Aug-5 Sept 1.50 x 102 1.87 x 10 1.18 x 10 1.04 x 10 1.18 4.82
5-10 Sept 2.11 x 102 2.42 x 10 1.58 x 10 1.54 x 10 3.40 5.34
10-24 Sept 3.01 x 102 3.13 x 10 2.81 x 10 3.45 x 10 3.81 6.92
24-27 Sept 4.38 x 102 1.45 x 102 1.90 x 102 3.52 x 102 1.63 x 102 8.53 x 10
27 Sept-3 Oct 3.73 x 102 9.09 x 10 7.89 x 10 3.05 x 102 3.53 x 10 2.74 x 10
3-8 Oct 1.13 x 103 2.19 x 102 3.94 x 102 6.32 x 102 1.60 x 102 8.36 x 10
8-16 Oct 4.38 x 102 6.01 x 10 7.28 x 10 1.23 x 102 3.51 x 10 1.50 x 10
16-24 Oct 6.50 x 102 1.06 x 102 7.51 x 10 9.88 x 10 4.35 x 10 2.08 x 10
24 Oct-2 Nov 8.72 x 102 1.25 x 102 8.72 x 10 1.68 x 102 3.51 x 10 1.87 x 10
2-8 Nov 9.84 x 102 1.14 x 102 1.06 x 102 2.28 x 102 7.58 8.63
8-14 Nov 7.99 x 102 9.99 x 10 8.44 x 10 1.90 x 102 1.37 x 10 1.27 x 10
14-21 Nov 1.30 x 103 1.81 x 102 1.08 x 102 1.77 x 102 2.23 x 10 1.92 x 10
21-28 Nov 9.32 x 102 1.41 x 102 1.01 x 102 2.39 x 102 2.02 x 10 1.70 x 10
28Nov-7Dec 6.16x102 9.14x10 7.91 x10 1.93x102 1.84x10 1.55x10
7-22 Dec 1.43x 102 2.88 x 10 2.74 x 10 6.39 x 10 1.75 x 10 1.58 x 10
Detection limit 0.03 0.007 0.015 0.05 0.005 0.006
Naa 1.0000 0.8989** 0.6397** 0.6390** 0.3189 0.3383
Ala 0.3383 0.6955** 0.8747** 0.8465** 0.9909** 1.0000

Detection limits (DL) are defined here as the equivalent concentration of three times the standard devia-
tion of the blank response (unit = 10-9 g/g).
aCorrelation coefficient with Na and Al by paired t-test.
**p<0.01.

similar to each other and arise from the same
sources (26,2X. In the present study, a gen-
eral trend of rare earth elements is character-
ized by bimodal peaks in late September and
early October, as is Al (Table 3). Before peak
events, the rare earth pattern in snow is simi-
lar to that in sedimentary rock; thereafter,
this pattern becomes more like the rare earth
pattern in acidic rock, according to Taylor's
table of elment abundance (28). A crustal
enrichment factor for all the rare earth ele-
ments was <5 before the peak events, and the
EF ctc for La, Ce, Pr, Nd, Sm, Gd, and Th

increased to 5-10 after the peak events.
Local emissions from the Sor Rondane
Mountains and long-range air transport
processes could be the source of rare earth
elements in the drift snow.

It is customary to refer to the SO42- for
polar snows as non-sea salt (nss) s042,
where nss S042- is the non-sea salt concen-
tration corrected for the marine contribu-
tion (29b. Apparently, nss 5042- shows very
low or even negative concentration until
24-27 September; thereafter, it increases as
high as 150-650 ppb (Fig. 3). Previous
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Figure 3. Seasonal concentrations of non-sea salt
SQ42- in snow at Asuka Station.

studies have shown that volcanogenic so42-
is the dominant component following major
eruptions in Antarctica (30). Another possi-
ble source for nss sO42- is the biogenic pro-
duction in the oceans. Non-sea salt sulfate,
generally in the form of sulfuric acid or
ammonium sulfate, is a precursor that could
be from dimethylsulfide released by the bio-
genic activity of the marine surfaces or car-
bonyl sulfide, as suggested by others (31). A
significant correlation of nss so42- with Na
or Cl- in this study supports this hypothesis.

From July to late September, NO3- con-
centration stayed below 60 ppb, gradually
increased to 570 ppb in mid-November,
and recovered in December. Spring to early
summer maximum levels in nitrate have also
been confirmed in the South Pole ice cores
(6-8). The sublimation process could not
explain this trend very well because a maxi-
mum sublimation was thought to occur in
mid- to late December, when the daily solar
radiation showed its maximum (32). NO3-
versus nss SO42- concentration shows posi-

Table 2. Seasonal variations in the concentrations of trace elements
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tive correlation in the present study. Recent
work indicates that nitrate can enter the tro-
posphere through stratosphere-troposphere
air exchange or through the subsidence of
nitrate-laden polar stratospheric clouds. The
increase of tropospheric HNO3 could be
reflected in spring polar precipitation during
or after October, and the intensity of this
process may depend on the temperature of
the polar vortex (6-8).

From the meteorological data collected
at Syowa Station in 1991 (19), the lowest
value of daily total ozone was observed on
30 September. This ozone loss in the lower
stratosphere is believed to be a new phe-
nomenon peculiar to the 1991 polar vor-
tex, and its relationship to volcanic activity
has been suggested by Hofmann et al. (33).
The eruption of Mt. Pinatubo (15N,
120E, 13-15 June 1991) caused what is
believed to be the largest aerosol perturba-
tion to the stratosphere this century (34).
In addition, in the austral spring of 1991,
the Antarctic lower stratosphere was char-
acterized by a layer of volcanic aerosols
from the Cerro Hudson eruption (46S,
73W, 12-15, August 1991) (35).

Lower tropospheric ozone followed a
prominent seasonal change of winter maxi-
mum and summer minimum, which is
very close to results of surface ozone mea-
surements (36-38). It has been suggested
that the intrusion of stratospheric ozone
into the troposphere occurs over Syowa
Station throughout the year and that air
with low ozone concentration is transport-
ed from subpolar or middle latitudes to
Antarctica through the lower troposphere
from spring to early autumn.

In summary, a bulk deposition of most
of the elements and non-sea salt sulfate
could be transported by a long range air
transport process or polar stratospheric pre-
cipitation in austral spring at Asuka
Station. Particularly, it reflects the atmos-
pheric peculiarity of austral spring in 1991,
characterized by volcanic emissions of Mt.
Hudson and Mt. Pinatubo. Because only
one season of drifting snow data is available
in this study, it should be emphasized that
this phenomenon must be confirmed by
further studies and snow pit chemistry.
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Table 3. Seasonal variations in the concentrations of rare earth elements
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